Предназначены для определения напряженно-деформированного состояния континуальных объектов и массивных пространственных конструкций из однородного изотропного линейно-упругого материала в постановке трехмерной задачи теории упругости.
Кроме того, возможно решение объемной задачи теории упругости для двухкомпонентных материалов (железобетона, композитов и т.д.), при котором один из компонентов (армирующий) обладает более высокими прочностными свойствами, чем основной (связующий). Предполагается, что армирующий материал (отдельные стержни, сетки и т.п.) расположены ортогонально осям местной системы координат элемента. Такие двухкомпонентные материалы носят название конструктивно-ортотропных.
Функционал Лагранжа при нулевых граничных условиях имеет вид:
где:sx(x,y,z), sy(x,y,z), sz(x,y,z), txy(x,y,z), tyz(x,y,z), tzx(x,y,z) — компоненты тензора напряжений, являющиеся непрерывными функциями координат;
- относительные линейные и угловые деформации;
U(x,y,z), V(x,y,z),W(x,y,z) - компоненты перемещений точек тела, параллельные соответственно осям OX,OY,OZ
общей системы координат;
Рх, Ру, Pz - компоненты интенсивности поверхностных сил, действующих в направлении осей OX, OY, OZ соответственно;
X, Y, Z -компоненты интенсивности объемных сил (на единицу объема) в направлении осей OX,OY и OZ соответственно.
Деформации и напряжения связаны между собой зависимостями:
где:Е - модуль Юнга; n -
коэффициент Пуассона; G - модуль сдвига.
Допускается задание нагрузок на конечный элемент как в местной, так и в общей системах координат с привязкой как в местной, так и в общей системе координат, а также с привязкой в виде приращений в общей системе координат. Предусмотрены следующие виды нагрузок (табл. 1.4):
5, 15 - сосредоточенная, задаваемая относительно осей местной или общей систем координат соответственно, с привязкой в местной системе координат;